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Transfusion independence and HMGA2 activation
after gene therapy of human f-thalassaemia
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The p-haemoglobinopathies are the most prevnlem mhented dis-
orders worldwide. Gene therapy of fj-thal

hdchty and h||J1 lllrﬁ" Hence, several mouse models of the f-

challenging given the requirement for massive haemnglobm pro-
duction in a lineage-specific manner and the lack of selective
advantage for corrected h stem cells. Cq d
¥/B°-thalassaemia is the most common form of severe thalassae-
mia in southeast Asian countries and their diasporas'?, The '~
globin allele bears a point mutation that causes alternative splicing.
The ab lly spliced form is oding, whereas the correctly
spliced messenger RNA expresses a mmlcd DE—globm wndl p:mal
instability'?. When this is with a non-fu

have been corrected, long-term, by ex vivo trans-
duction of haematopoietic stem cells (HSCs) with B-globin lentiviral
vectors*', These advances have prompted the prudent initiation of a
human clinical trial (Supplementary Note 1).

The general structure of the B-globin-expressing lentiviral vector
has been previously described*® (Suppl y Fig. 1). Itis a self-
inactivating vector with two copies of the 250-base-pair (bp) core of
the cHS4 chromatin insulator”' implanted in the U3 region. It encodes
amutated adult B-globin PATS7) wwith anti-sickling properties’ that
can be ished from normal adult B-globin (B*) by high-

allele, a pmfound decrease in f-globin synthesis results, ;nd
of p*/p’-thalk ia patients are
dqaendent“ The only nvmlnble curntwe therapy is allogeneic hae-
P stem cell although most punems do
not have a hi leuk hed, g
donor, and those who do still nsk re]ectmn or gnft-versus-hnsl
disease. Here we show that, 33 months after lentiviral p-globin gene
transfer, an adult patient with severe §/p’-thalassaemia dependent
on monthly transfusions since early childhood has become trans-
fusion independent for the past 21 months. Blood haemoglobin is
maintained between 9 and 10gdl™", of which one-third contains
vector-encoded P-globin. Most of the therapeutic benefit results
froma dominant, myelmd bnsed cell clone, in which the integrated
vector ivation of HMGA2il throid cell

performance liquid chromatography (HPLC) analysis in individuals
receiving red blood cell transfusions and/or B -thalassaemia patients.

This report focuses on the first treated patient (P2) who did not
receive back-uy up cells: a male, aged 18 years at the time of treatment,
with severe B¥/B-thalassaemia. A previous patient (P1) failed to
engraft because the HSCs had been compromised by the technical
handling of the cells without relation to the gene therapy vector. P1
failed to engraft after 5weeks and was thus given back-up cells
(Supplementary Note 2). P2 was first lmnsfusul atage three because
of poorly tolerated anaemia (6.7 gdl™" despite residual fetal hae-
moglobin (HbF)) and major hepatosplenomegaly. Transfusion
requirements rapidly increased to once a month (2-3 red blood cell
packs cach time; lS7mI of red blnod cells per kg the year before
p ized at age 6. In spite of this, Hb levels

). He was

wn!h further increased expression of a truncated HMGA2 mRNA
itive to degradation by let-7 microRNA Theclonddonn-

decreased several times to as low as 4 gdl !, and hydroxurea therapy
was m«.ma e. Iron chelation was initiated at age 8 by parenteral

nance that accompanies therapeutic efficacy may be
o

result froma hi d

ight, 5 times a week. The patient did not have a
related hi leukoc hed donor and was thus

by dysregulation of the HMGA2 gene in slemlpro;ennor cells.
The design of i integrative vecmn for human S-glohm gene transfer
has been difficult. The g vthroid-
specific expression are complex: the B- gubm gene “with its introns,
promoter and P-locus control region (B-LCR)™. Lentiviral vectors
have proven capahle of |ransferring these elaborate structures with

enrolled in this trial ater informed consent.

The exvivotransduction efficiency of bulk bone marrow CD34 " cells
was 0.6 vector per cell after 1 week in culture after gene transfer. The
patient was conditioned by intravenous Busulfex (3.2 mgkg ' day ™
for 4days) without the addition of cyclophosphamide, before trans-
plantation with amologuus gene-modified and cryopreserved cells
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have a compatible donor but nevertheless face the risk of GVHD
after allo-HSCT. much of the drawbacks may be avoided by gene
therapy of HSCs. Direct homologous recombination/repair of the
defective [3-globin gene would be i1deal, but is not yet feasible in
HSCs. Gene addition by vector-based transter and chromosomal

inteeration of a therapeutic globin gene remains the approach of

choice. However, efficient modification of HSCs and high expres-

Emmanuel Payen'? and Philippe Leboulch™*
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SUMMARY

Differentiated cells can be reprogrammed to an
embryonic-like state by transfer of nuclear con-
tents into oocytes or by fusion with embryonic
stem (ES) cells. Little is known about factors
that induce this reprogramming. Here, we dem-
onstrate induction of pluripotent stem cells
from mouse embryonic or adult fibroblasts by
introducing four factors, Oct3/4, Sox2, c-Myc,
and KIf4, under ES cell culture conditions.
Unexpectedly, Nanog was dispensable. These
cells, which we designated iPS (induced plurip-
otent stem) cells, exhibit the morphology and
growth properties of ES cells and express ES
cell marker genes. Subcutaneous transplanta-
tion of iPS cells into nude mice resulted in
tumors containing a variety of tissues from all
three germ layers. Following injection into blas-
tocysts, iPS cells contributed to mouse embry-
onic development. These data demonstrate
that pluripotent stem cells can be directly gen-
erated from fibroblast cultures by the addition
of only a few defined factors.

INTRODUCTION

Embryonic stem (ES) cells, which are derived from the in-
ner cell mass of mammalian blastocysts, have the ability
to grow indefinitely while maintaining pluripotency and
the ability to differentiate into cells of all three germ layers
(Evans and Kaufman, 1981; Martin, 1981). Human ES cells
might be used to treat a host of diseases, such as Parkin-
son's disease, spinal cord injury, and diabetes (Thomson
et al., 1998). However, there are ethical difficulties regard-
ing the use of human embryos, as well as the problem of
tissue rejection following transplantation in patients. One
way to circumvent these issues is the generation of plu-
ripotent cells directly from the patients’ own cells.
Somatic cells can be reprogrammed by transferring
their nuclear contents into oocytes (Wilmut et al., 1997)

or by fusion with ES cells (Cowan et al., 2005; Tada
et al., 2001), indicating that unfertilized eggs and ES cells
contain factors that can confer totipotency or pluripotency
to somatic cells. We hypothesized that the factors that
play important roles in the maintenance of ES cell identity
also play pivotal roles in the induction of pluripotency in
somatic cells.

Several transcription factors, including Oct3/4 (Nichols
et al., 1998; Niwa et al., 2000), Sox2 (Avilion et al., 2003),
and Nanog (Chambers et al., 2003; Mitsui et al., 2003),
function in the maintenance of pluripotency in both early
embryos and ES cells. Several genes that are frequently
upregulated in tumors, such as Stat3 (Matsuda et al.,
1999; Niwa et al., 1998), £-Ras (Takahashi et al., 2003),
c-myc (Cartwright et al., 2005), Kif4 (Li et al.,, 2005), and
B-catenin (Kielman et al., 2002; Sato et al., 2004), have
been shown to contribute to the long-term maintenance
of the ES cell phenotype and the rapid proliferation of
ES cells in culture. In addition, we have identified several
other genes that are specifically expressed in ES cells
(Maruyama et al., 2005; Mitsui et al., 2003).

In this study, we examined whether these factors could
induce pluripotency in somatic cells. By combining four
selected factors, we were able to generate pluripotent
cells, which we call induced pluripotent stem (iPS) cells,
directly from mouse embryonic or adult fibreblast cul-
tures.

RESULTS

We selected 24 genes as candidates for factors that
induce pluripotency in somatic cells, based on our
hypothesis that such factors also play pivotal roles in the
maintenance of ES cell identity (see Table S1 in the
Supplemental Data available with this article online). For
B-catenin, c-Myc, and Stat3, we used active forms,
S33Y-f-catenin (Sadot et al., 2002), T58A-c-Myc (Chang
et al., 2000), and Stat3-C (Bromberg et al., 1999), respec-
tively. Because of the reported negative effect of Grb2
on pluripotency (Burdon et al., 1999; Cheng et al., 1998),
we included its dominant-negative mutant Grb2ASH2
(Miyamoto et al., 2004) as 1 of the 24 candidates.

Cell 126, 663-676, August 25, 2006 ©2006 Elsevier Inc. 663
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ABSTRACT

Tal-effector nucleases (TALENs) are engineered
proteins that can stimulate precise genome editing
through specific DNA double-strand breaks. Sickle
cell disease and -thalassemia are common genetic
disorders caused by mutations in f-globin, and we
engineered a pair of highly active TALENs that
induce modification of 54% of human f-globin
alleles near the site of the sickle mutation. These
TALENS stimulate targeted integration of thera-
peutic, full-length beta-globin cDNA to the endogen-
ous f-globin locus in 19% of cells prior to selection
as quantified by single molecule real-time
sequencing. We also developed highly active
TALENSs to human y-globin, a pharmacologic target
in sickle cell disease therapy. Using the [-globin and
v-globin TALENs, we generated cell lines that
express GFP under the control of the endogenous
p-globin promoter and tdTomato under the control
of the endogenous y-globin promoter. With these
fluorescent reporter cell lines, we screened a
library of small molecule compounds for their differ-
ential effect on the transcriptional activity of the
endogenous B- and y-globin genes and identified
several that preferentially upregulate y-globin
expression.

INTRODUCTION

Sickle cell disease is the most common monogenic disease
worldwide and is caused by a single point mutation in the
B-globin gene. Painful clinical symptoms begin shortly after
birth as mutated B-globin subunits replace non-defective
v-globin chains in the predominant form of hemoglobin.
Current pharmacological treatment with hydroxyurea par-
tially reverses this globin switching by increasing the
production of y-globin (1.2). This has led to broad interest
in developing other compounds and discovering new

mechanisms that preferentially upregulate y-globin (2-5),
and also in developing methods to study globin regulation
(6.7). Analyses of differential expression of - and y-globin
generally have been limited to hemoglobin electrophoresis
or qRT-PCR. but recent reports have described a method of
using the expression of fluorescent molecules driven by the
B- and y-globin promoters as a readout of differential globin
regulation. In those studies, the authors integrated into the
genome a bacterial artificial chromosome containing the
entire 200 kb B-globin locus (which includes both B-globin
and y-globin among other genes). modified such that the
B- and y-globin promoters drive expression of fluorescent
proteins (6.7). The integration of the complete genomic
locus presumably maintains much of the physiologically
relevant regulation of expression. but it does not allow for
the direct analysis of the endogenous locus and is con-
founded by the fact that integration is in a random
genomic location and that some cells gain multiple copies
of the BAC. In addition, a BAC-based strategy creates a
system in which the globin locus is triploid rather than
diploid and this change may also affect the regulatory
dynamics. Alternatively. direct modification of the endogen-
ous B- and y-globin loci eliminates those confounding
variables.

Endogenous genomic loci can be precisely altered using
engineered zinc finger nucleases (ZFNs) (8-11) and Tal-
effector nucleases (TALENs) (12-14). ZFNs and
TALENs are comprised of a specifically engineered
DNA binding domain fused to the Fokl endonuclease
domain. Binding of a pair of ZFNs or TALENSs to con-
tiguous sites leads to the dimerization of the Fokl domain,
resulting in a targeted DNA double-strand break. Repair
of the break can proceed by mutagenic non-homologous
end joining or by high-fidelity homologous recombination
with a homologous DNA donor template. Compared to
ZFNs, TALENSs seem to cause lower levels of cytotoxicity
(15). Their recognition domain is characterized by
repeated arrays of 34 conserved amino acids. except in
positions 12 and 13. These two amino acids comprise
the repeat variable domain (RVD), which contacts the
DNA and provides the nucleotide recognition specificity
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